Thyroid Cancer Imaging In Vivo by Targeting the Anti-Apoptotic Molecule Galectin-3
نویسندگان
چکیده
BACKGROUND The prevalence of thyroid nodules increases with age, average 4-7% for the U.S.A. adult population, but it is much higher (19-67%) when sub-clinical nodules are considered. About 90% of these lesions are benign and a reliable approach to their preoperative characterization is necessary. Unfortunately conventional thyroid scintigraphy does not allow the distinction among benign and malignant thyroid proliferations but it provides only functional information (cold or hot nodules). The expression of the anti-apoptotic molecule galectin-3 is restricted to cancer cells and this feature has potential diagnostic and therapeutic implications. We show here the possibility to obtain thyroid cancer imaging in vivo by targeting galectin-3. METHODS The galectin-3 based thyroid immuno-scintigraphy uses as radiotracer a specific (99m)Tc-radiolabeled mAb. A position-sensitive high-resolution mini-gamma camera was used as imaging capture device. Human galectin-3 positive thyroid cancer xenografts (ARO) and galectin-3 knockout tumors were used as targets in different experiments in vivo. 38 mice with tumor mass of about 1 gm were injected in the tail vein with 100 microCi of (99m)Tc-labeled mAb to galectin-3 (30 microg protein/in 100 microl saline solution). Tumor images were acquired at 1 hr, 3 hrs, 6 hrs, 9 hrs and 24 hrs post injection by using the mini-gamma camera. FINDINGS Results from different consecutive experiments show an optimal visualization of thyroid cancer xenografts between 6 and 9 hours from injection of the radiotracer. Galectin-3 negative tumors were not detected at all. At 6 hrs post-injection galectin-3 expressing tumors were correctly visualized, while the whole-body activity had essentially cleared. CONCLUSIONS These results demonstrate the possibility to distinguish preoperatively benign from malignant thyroid nodules by using a specific galectin-3 radio-immunotargeting. In vivo imaging of thyroid cancer may allow a better selection of patients referred to surgery. The possibility to apply this method for imaging and treatment of other galectin-3 expressing tumors is also discussed.
منابع مشابه
Noninvasive In Vivo Imaging and Biologic Characterization of Thyroid Tumors by ImmunoPET Targeting of Galectin-3.
The high prevalence of thyroid nodules in the adult population and the relatively low incidence of thyroid cancer make the preoperative identification of malignant lesions challenging. The β-galactoside-binding protein galectin-3 is widely expressed in well-differentiated thyroid carcinomas, but not in normal thyrocytes and benign thyroid nodules. This molecule offers a candidate biomarker to i...
متن کاملCorrection: Noninvasive In Vivo Imaging and Biologic Characterization of Thyroid Tumors by ImmunoPET Targeting of Galectin-3.
متن کامل
Galectin-3 leads to attenuation of apoptosis through Bax heterodimerization in human thyroid carcinoma cells
Cancer cells survive escaping normal apoptosis and the blocks in apoptosis that keep cancer cells alive are promising candidates for targeted therapy. Galectin-3 (Gal-3) is, a member of the lectin family, which is involved in cell growth, adhesion, proliferation and apoptosis. It remains elusive to understand the role of Gal-3 on apoptosis in thyroid carcinoma cells. Here, we report that Gal-3 ...
متن کاملGalectin-3 targeted therapy with a small molecule inhibitor activates apoptosis and enhances both chemosensitivity and radiosensitivity in papillary thyroid cancer.
Although most patients with papillary thyroid cancer (PTC) have favorable outcomes, some have advanced PTC that is refractory to external beam radiation and systemic chemotherapy. Galectin-3 (Gal-3) is a beta-galactoside-binding protein with antiapoptotic activity that is consistently overexpressed in PTC. The purpose of this study is to determine if Gal-3 inhibition promotes apoptosis, chemose...
متن کاملEndogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways.
Studies of CD95 (APO-1/Fas), a member of the death receptor family, have revealed that it is involved in two primary CD95 apoptotic signaling pathways, one regulated by the large amount of active caspase-8 (type I) formed at the death-inducing signaling complex and the other by the apoptogenic activity of mitochondria (type II). To date, it is still unclear which pathway will be activated in re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008